6.9 KiB
6.9 KiB
| title | tags | categories | mathjax | abbrlink | date |
|---|---|---|---|---|---|
| 线性回归 | linear-regression | machinelearning | true | 52662 | 2025-01-19 16:46:51 |
线性回归简介
用于预测一个连续的目标变量(因变量),与一个或多个特征(自变量)之间存在线性关系。
假设函数:
y = w_1x_1 + w_2x_2 + \cdot\cdot\cdot+w_nx_n
y是目标变量(因变量),即我们希望预测的值。x1,x2,…,xn 是特征变量(自变量),即输入的值。
损失函数
为了找到最佳的线性模型,我们需要通过最小化损失函数来优化模型参数。在线性回归中,常用的损失函数是 均方误差(MSE):
J(\theta) = \frac{1}{2N} \sum_{i=1}^{N} (y_i - f_\theta(x_i))^2
- N 是样本的数量。
y_i 是第 i 个样本的真实值。f_\theta(x_i)是模型预测的第 i 个样本的值。
线性回归优化
-
梯度下降法
from sklearn.datasets import fetch_california_housing from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import SGDRegressor from sklearn.metrics import mean_squared_error # 1. 获取数据集 housing = fetch_california_housing() # 2. 数据集处理 # 2.1 分割数据集 X_train, X_test, y_train, y_test = train_test_split(housing.data, housing.target, test_size=0.25) # 3. 特征工程 # 3.1 标准化 transfer = StandardScaler() X_train = transfer.fit_transform(X_train) X_test = transfer.transform(X_test) # 使用 transform() 而不是 fit_transform() # 4.机器学习- 梯度下降法 estimater = SGDRegressor(max_iter=1000, eta0=0.01) estimater.fit(X_train, y_train) print(f"SGD模型的偏置是:{estimater.intercept_}") print(f"SGD模型的系数是:{estimater.coef_}") # 5. 模型评估 y_pred = estimater.predict(X_test) print(f"SGD模型预测值:{y_pred}") mse = mean_squared_error(y_test, y_pred) print(f"SGD模型均方误差:{mse}") -
正规方程
from sklearn.datasets import fetch_california_housing from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error # 1. 获取数据集 housing = fetch_california_housing() # 2. 数据集处理 # 2.1 分割数据集 X_train, X_test, y_train, y_test = train_test_split(housing.data, housing.target, test_size=0.25) # 3. 特征工程 # 3.1 标准化 transfer = StandardScaler() X_train = transfer.fit_transform(X_train) X_test = transfer.fit_transform(X_test) # 4.机器学习- 线性回归 estimater = LinearRegression() estimater.fit(X_train, y_train) print(f"模型的偏置是:{estimater.intercept_}") print(f"模型的系数是:{estimater.coef_}") # 5. 模型评估 y_pred = estimater.predict(X_test) print(f"模型预测值:{y_pred}") mse = mean_squared_error(y_test, y_pred) print(f"模型均方误差:{mse}") -
岭回归
from sklearn.datasets import fetch_california_housing from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import Ridge, RidgeCV from sklearn.metrics import mean_squared_error # 1. 获取数据集 housing = fetch_california_housing() # 2. 数据集处理 # 2.1 分割数据集 X_train, X_test, y_train, y_test = train_test_split(housing.data, housing.target, test_size=0.25) # 3. 特征工程 # 3.1 标准化 transfer = StandardScaler() X_train = transfer.fit_transform(X_train) X_test = transfer.transform(X_test) # 使用 transform() 而不是 fit_transform() # 4.机器学习- 岭回归 使用了Ridge的alpha的搜索 # estimater = Ridge(alpha=1.0) estimater = RidgeCV(alphas=[0.001, 0.01, 0.1, 1, 10, 100]) estimater.fit(X_train, y_train) print(f"Ridge模型的偏置是:{estimater.intercept_}") print(f"Ridge模型的系数是:{estimater.coef_}") # 查看最佳 alpha print(f"最佳 alpha 值是:{estimater.alpha_}") # 5. 模型评估 y_pred = estimater.predict(X_test) print(f"Ridge模型预测值:{y_pred}") mse = mean_squared_error(y_test, y_pred) print(f"Ridge模型均方误差:{mse}")
这样每个代码块的缩进保持一致,便于阅读和理解。如果有其他优化需求,随时告诉我!
模型保存和加载
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Ridge, RidgeCV
from sklearn.metrics import mean_squared_error
import joblib
def save_model():
# 1. 获取数据集
housing = fetch_california_housing()
# 2. 数据集处理
# 2.1 分割数据集
X_train, X_test, y_train, y_test = train_test_split(housing.data, housing.target, test_size=0.25)
# 3. 特征工程
# 3.1 标准化
transfer = StandardScaler()
X_train = transfer.fit_transform(X_train)
X_test = transfer.transform(X_test) # 使用 transform() 而不是 fit_transform()
# 4. 机器学习 - 岭回归 使用了Ridge的alpha的搜索
estimater = RidgeCV(alphas=[0.001, 0.01, 0.1, 1, 10, 100])
estimater.fit(X_train, y_train)
print(f"Ridge模型的偏置是:{estimater.intercept_}")
print(f"Ridge模型的系数是:{estimater.coef_}")
# 保存模型
joblib.dump(estimater, 'ridge_model.pkl')
# 查看最佳 alpha
print(f"最佳 alpha 值是:{estimater.alpha_}")
# 5. 模型评估
y_pred = estimater.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print(f"Ridge模型均方误差:{mse}")
def load_model():
# 1. 获取数据集
housing = fetch_california_housing()
# 2. 数据集处理
# 2.1 分割数据集
X_train, X_test, y_train, y_test = train_test_split(housing.data, housing.target, test_size=0.25)
# 3. 特征工程
# 3.1 标准化
transfer = StandardScaler()
X_train = transfer.fit_transform(X_train)
X_test = transfer.transform(X_test) # 使用 transform() 而不是 fit_transform()
# 加载模型
estimater = joblib.load('ridge_model.pkl')
print(f"Ridge模型的偏置是:{estimater.intercept_}")
print(f"Ridge模型的系数是:{estimater.coef_}")
# 查看最佳 alpha
print(f"最佳 alpha 值是:{estimater.alpha_}")
# 5. 模型评估
y_pred = estimater.predict(X_test)
mse = mean_squared_error(y_test, y_pred)
print(f"Ridge模型预测值:{y_pred}")
print(f"Ridge模型均方误差:{mse}")
print("训练并保存模型:")
save_model()
print("加载模型")
load_model()

