ObsidianRepository/HaiNiuHadoop搭建/4.Yarn配置.md

483 lines
18 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

- `yarn.env.sh`
```bash
# 添加如下内容:
source /etc/profile
JAVA=$JAVA_HOME/bin/java
JAVA_HEAP_MAX=-Xmx256m
YARN_HEAPSIZE=256 export YARN_RESOURCEMANAGER_HEAPSIZE=256
```
```bash
# 分发 yarn.env.sh 到其他主机
scp_all.sh /usr/local/hadoop/etc/hadoop/yarn-env.sh /usr/local/hadoop/etc/hadoop/
```
- `yarn-site.xml`
```xml
<configuration>
<!-- RM1 configs start -->
<property>
<name>yarn.resourcemanager.address.rm1</name>
<value>nn1:8032</value>
<description>ResourceManager 对客户端暴露的地址。客户端通过该地址向RM提交应用程序杀死应用程序等</description>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>nn1</value>
<description>ResourceManager主机名</description>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm1</name>
<value>nn1:8030</value>
<description>ResourceManager 对ApplicationMaster暴露的访问地址。ApplicationMaster通过该地址向RM申请资源、释放资源等。</description>
</property>
<property>
<name>yarn.resourcemanager.webapp.https.address.rm1</name>
<value>nn1:8089</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>nn1:8088</value>
<description>ResourceManager对外web ui地址。用户可通过该地址在浏览器中查看集群各类信息。</description>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm1</name>
<value>nn1:8031</value>
<description>ResourceManager 对NodeManager暴露的地址.。NodeManager通过该地址向RM汇报心跳领取任务等。</description>
</property>
<property>
<name>yarn.resourcemanager.admin.address.rm1</name>
<value>nn1:8033</value>
<description>ResourceManager 对管理员暴露的访问地址。管理员通过该地址向RM发送管理命令等</description>
</property>
<!-- RM1 configs end -->
<!-- RM2 configs start -->
<property>
<name>yarn.resourcemanager.address.rm2</name>
<value>nn2:8032</value>
<description>ResourceManager 对客户端暴露的地址。客户端通过该地址向RM提交应用程序杀死应用程序等</description>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>nn2</value>
<description>ResourceManager主机名</description>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm2</name>
<value>nn2:8030</value>
<description>ResourceManager 对ApplicationMaster暴露的访问地址。ApplicationMaster通过该地址向RM申请资源、释放资>源等。</description>
</property>
<property>
<name>yarn.resourcemanager.webapp.https.address.rm2</name>
<value>nn2:8089</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>nn2:8088</value>
<description>ResourceManager对外web ui地址。用户可通过该地址在浏览器中查看集群各类信息。</description>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm2</name>
<value>nn2:8031</value>
<description>ResourceManager 对NodeManager暴露的地址.。NodeManager通过该地址向RM汇报心跳领取任务等。</description>
</property>
<property>
<name>yarn.resourcemanager.admin.address.rm2</name>
<value>nn2:8033</value>
<description>ResourceManager 对管理员暴露的访问地址。管理员通过该地址向RM发送管理命令等</description>
</property>
<!-- RM2 configs end -->
<!-- RM3 configs start -->
<property>
<name>yarn.resourcemanager.address.rm3</name>
<value>nn3:8032</value>
<description>ResourceManager 对客户端暴露的地址。客户端通过该地址向RM提交应用程序杀死应用程序等</description>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm3</name>
<value>nn3</value>
<description>ResourceManager主机名</description>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm3</name>
<value>nn3:8030</value>
<description>ResourceManager 对ApplicationMaster暴露的访问地址。ApplicationMaster通过该地址向RM申请资源、释放资源等。</description>
</property>
<property>
<name>yarn.resourcemanager.webapp.https.address.rm3</name>
<value>nn3:8089</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm3</name>
<value>nn3:8088</value>
<description>ResourceManager对外web ui地址。用户可通过该地址在浏览器中查看集群各类信息。</description>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm3</name>
<value>nn3:8031</value>
<description>ResourceManager 对NodeManager暴露的地址.。NodeManager通过该地址向RM汇报心跳领取任务等。</description>
</property>
<property>
<name>yarn.resourcemanager.admin.address.rm3</name>
<value>nn3:8033</value>
<description>ResourceManager 对管理员暴露的访问地址。管理员通过该地址向RM发送管理命令等</description>
</property>
<!-- yarn ha start -->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
<description>是否开启yarn ha</description>
</property>
<property>
<name>yarn.resourcemanager.ha.automatic-failover.embedded</name>
<value>true</value>
<description>ha状态切换为自动切换</description>
</property>
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2,rm3</value>
<description>RMs的逻辑id列表</description>
</property>
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>nn1:2181,nn2:2181,nn3:2181</value>
<description>ha状态的存储地址</description>
</property>
<!-- yarn ha end -->
<!-- 元数据存储共享 start -->
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>pseudo-yarn-rm-cluster</value>
<description>集群的Id</description>
</property>
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>true</value>
<description>默认值为false也就是说resourcemanager挂了相应的正在运行的任务在rm恢复后不能重新启动</description>
</property>
<property>
<name>yarn.resourcemanager.store.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
<description>配置RM状态信息存储方式3有两种一种是FileSystemRMStateStore,另一种是MemoryRMStateStore还有一种目前较为主流的是zkstore</description>
</property>
<property>
<name>yarn.resourcemanager.zk.state-store.address</name>
<value>nn1:2181,nn2:2181,nn3:2181</value>
<description>当使用ZK存储时指定在ZK上的存储地址。</description>
</property>
<!-- 元数据存储共享 end-->
<!-- nodeManager基础配置 start-->
<property>
<name>yarn.nodemanager.local-dirs</name>
<value>/data/yarn/local</value>
<description>中间结果存放位置存放执行Container所需的数据如可执行程序或jar包配置文件等和运行过程中产生的临时数据</description>
</property>
<property>
<name>yarn.nodemanager.log-dirs</name>
<value>/data/yarn/logs</value>
<description>Container运行日志存放地址可配置多个目录</description>
</property>
<property>
<name>yarn.nodemanager.address</name>
<value>0.0.0.0:9103</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
<description>NodeManager上运行的附属服务。需配置成mapreduce_shuffle才可运行MapReduce程序</description>
</property>
<property>
<name>yarn.nodemanager.webapp.address</name>
<value>0.0.0.0:8042</value>
</property>
<property>
<name>yarn.nodemanager.localizer.address</name>
<value>0.0.0.0:8040</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>mapreduce.shuffle.port</name>
<value>23080</value>
</property>
<!-- nodeManager基础配置 end-->
<!-- nodeMananger资源限定 start -->
<property>
<name>yarn.scheduler.minimum-allocation-vcores</name>
<value>1</value>
<description>单个任务可申请的最小虚拟CPU个数</description>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-vcores</name>
<value>3</value>
<description>单个任务可申请的最大虚拟CPU个数此参数对应yarn.nodemanager.resource.cpu-vcores建议最大为一个物理CPU的数量</description>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>1536</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>1024</value>
<description>单个任务可申请的最多物理内存量</description>
</property>
<property>
<name>yarn.nodemanager.resource.cpu-vcores</name>
<value>3</value>
<description>该节点上YARN可使用的虚拟CPU个数一个物理CPU对应3个虚拟CPU</description>
</property>
<!-- 关闭内存检测 start -->
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
<description>虚拟内存检测默认是True</description>
</property>
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
<description>物理内存检测默认是True</description>
</property>
<!-- 关闭内存检测 end -->
<property>
<name>yarn.application.classpath</name>
<value>$HADOOP_CONF_DIR,
$HADOOP_COMMON_HOME/share/hadoop/common/*,
$HADOOP_COMMON_HOME/share/hadoop/common/lib/*,
$HADOOP_COMMON_HOME/share/hadoop/hdfs/*,
$HADOOP_COMMON_HOME/share/hadoop/hdfs/lib/*,
$HADOOP_COMMON_HOME/share/hadoop/mapreduce/*,
$HADOOP_COMMON_HOME/share/hadoop/mapreduce/lib/*,
$HADOOP_COMMON_HOME/share/hadoop/yarn/*,
$HADOOP_COMMON_HOME/share/hadoop/yarn/lib/*</value>
</property>
<!-- nodeMananger资源限定 end-->
<!-- 容量调度器的优先级
0 - 5 , 0是默认值 5 优先级最高
start
-->
<property>
<name>yarn.cluster.max-application-priority</name>
<value>5</value>
</property>
<!-- 容量调度器的优先级
0 - 5 , 0是默认值 5 优先级最高
end
-->
<!--在yarn-site.xml中配置执行的任务文件应该上传到/user的用户目录下 start -->
<property>
<name>yarn.app.mapreduce.am.staging-dir</name>
<value>/user</value>
</property>
<property>
<name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name>
<value>5000</value>
</property>
<!-- end -->
<!-- 日志聚集功能开启 start-->
<property>
<name>yarn.log-aggregation-enable</name>
<value>true</value>
<description>是否启用日志聚集功能</description>
</property>
<property>
<name>yarn.nodemanager.remote-app-log-dir</name>
<value>/tmp/app-logs</value>
<description>当应用程序运行结束后日志被转移到的HDFS目录启用日志聚集功能时有效</description>
</property>
<!--目录相关 end -->
<!-- 其它 -->
<property>
<name>yarn.log-aggregation.retain-seconds</name>
<value>1209600</value>
<description>nodemanager上所有Container的运行日志在HDFS中的保存时间保留半个月</description>
</property>
<!-- 日志聚集功能开启end -->
</configuration>
```
```bash
# 分发 yarn-site.xml 到其他主机
scp_all.sh /usr/local/hadoop/etc/hadoop/yarn-site.xml /usr/local/hadoop/etc/hadoop/
```
`mapred-site.xml`
```xml
<configuration>
<!--运行模式 -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
<description>运行模式</description>
</property>
<!--运行模式 -->
<!--资源限定 -->
<property>
<name>yarn.app.mapreduce.am.resource.mb</name>
<value>1024</value>
<description>MR ApplicationMaster yarn申请的内存量</description>
</property>
<property>
<name>yarn.app.mapreduce.am.command-opts</name>
<value>-Xmx768m</value>
<description>jvm使用内存</description>
</property>
<property>
<name>mapreduce.map.memory.mb</name>
<value>1024</value>
<description>每个Map Task yarn申请内存</description>
</property>
<property>
<name>mapreduce.reduce.memory.mb</name>
<value>1024</value>
<description>每个Reduce Task yarn申请内存</description>
</property>
<property>
<name>yarn.app.mapreduce.am.resource.cpu-vcores</name>
<value>1</value>
<description>MR ApplicationMaster占用的虚拟CPU个数此参数对应yarn.nodemanager.resource.cpu-vcores建议最大为一个物理CPU的数量</description>
</property>
<property>
<name>mapreduce.reduce.java.opts</name>
<value>-Xmx768m</value>
<description>reduce jvm实际内存</description>
</property>
<property>
<name>mapreduce.map.java.opts</name>
<value>-Xmx768m</value>
<description>map jvm实际内存</description>
</property>
<property>
<name>mapreduce.map.cpu.vcores</name>
<value>1</value>
<description>每个map Task需要的虚拟cpu数</description>
</property>
<property>
<name>mapreduce.reduce.cpu.vcores</name>
<value>1</value>
<description>每个Reduce Task需要的虚拟cpu数</description>
</property>
<property>
<name>mapreduce.application.classpath</name>
<value>/usr/local/hadoop/etc/hadoop,/usr/local/hadoop/share/hadoop/common/*,/usr/local/hadoop/share/hadoop/common/lib/*,/usr/local/hadoop/share/hadoop/hdfs/*,/usr/local/hadoop/share/hadoop/hdfs/lib/*,/usr/local/hadoop/share/hadoop/mapreduce/*,/usr/local/hadoop/share/hadoop/mapreduce/lib/*,/usr/local/hadoop/share/hadoop/yarn/*,/usr/local/hadoop/share/hadoop/yarn/lib/*,/usr/local/hadoop/lib/*,/usr/local/hbase/lib/*</value>
<description>运行mr程序所使用的虚拟机运行时的classpath</description>
</property>
<!-- 在nn1 开启历史服务器 start-->
<property>
<name>mapreduce.jobhistory.address</name>
<value>nn1:10020</value>
<description>MapReduce JobHistory Server地址</description>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>nn1:19888</value>
<description>MapReduce JobHistory Server Web UI地址</description>
</property>
<property>
<name>mapreduce.jobhistory.intermediate-done-dir</name>
<value>/data/mapred/tmp</value>
<description>MapReduce作业产生的日志存放位置</description>
</property>
<property>
<name>mapreduce.jobhistory.done-dir</name>
<value>/data/mapred/done</value>
<description>MR JobHistory Server管理的日志的存放位置</description>
</property>
<property>
<name>mapreduce.job.userlog.retain.hours</name>
<value>48</value>
</property>
<!-- 在nn1 开启历史服务器 end-->
<!-- map阶段开启输出压缩便于reduce阶段从磁盘拉取数据 start-->
<property>
<name>mapreduce.map.output.compress</name>
<value>true</value>
<description>map是否开启输出压缩</description>
</property>
<property>
<name>mapreduce.map.output.compress.codec</name>
<value>org.apache.hadoop.io.compress.Bzip2Codec</value>
<description>map输出默认的算法</description>
</property>
<!-- map阶段开启输出压缩 end-->
<!--
这里是开启reduce输出压缩如果开启了那么输出结果无法直接看到需要进行解压缩
如果需要,取消注释即可
<property>
<name>mapreduce.output.fileoutputformat.compress</name>
<value>true</value>
<description>reduce是否开启输出压缩</description>
</property>
<property>
<name>mapreduce.output.fileoutputformat.compress.codec</name>
<value>org.apache.hadoop.io.compress.Bzip2Codec</value>
<description>reduce输出默认的算法</description>
</property>
-->
</configuration>
```
```bash
# 分发 mapred-site.xml 到其他主机
scp_all.sh /usr/local/hadoop/etc/hadoop/mapred-site.xml /usr/local/hadoop/etc/hadoop/
```
**配置capacity-scheduler.xml**
```xml
<!-- yarn使用容量调度器来管理集群的资源
配置root队列下两个子队列 hainiu占比80 default占比20
start
-->
<configuration>
<property>
<name>yarn.scheduler.capacity.root.queues</name>
<value>hainiu,default</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hainiu.capacity</name>
<value>80</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.default.capacity</name>
<value>20</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.hainiu.maximum-capacity</name>
<value>100</value>
</property>
<property>
<name>yarn.scheduler.capacity.root.default.maximum-capacity</name>
<value>100</value>
</property>
<!-- yarn使用容量调度器来管理集群的资源
配置root队列下两个子队列 hainiu占比80 default占比20
end
-->
</configuration>
```
```shell
# 分发 capacity-scheduler.xml 到其他主机
scp_all.sh /usr/local/hadoop/etc/hadoop/capacity-scheduler.xml /usr/local/hadoop/etc/hadoop/
```
```shell
#启动yarn如果已经启动可以先关闭yarn集群stop-yarn.sh
start-yarn.sh
#启动历史服务器 ,在 nn1执行
mapred --daemon start historyserver
```