33 lines
979 B
YAML
33 lines
979 B
YAML
# BERT模型训练配置
|
||
database:
|
||
url: "mysql+pymysql://root:root@localhost/news_classifier" # 数据库连接URL
|
||
data_limit: 1000 # 加载数据量限制
|
||
|
||
model:
|
||
name: "bert-base-chinese" # 模型名称
|
||
num_labels: 9 # 分类数量
|
||
output_dir: "./models/deep_learning/bert_finetuned" # 模型输出目录
|
||
|
||
training:
|
||
use_gpu: true # 是否使用GPU(自动检测)
|
||
epochs: 3 # 训练轮数
|
||
batch_size: 8 # 训练批大小
|
||
learning_rate: 2e-5 # 学习率
|
||
warmup_steps: 500 # 预热步数
|
||
weight_decay: 0.01 # 权重衰减
|
||
fp16: null # 混合精度(null表示自动检测)
|
||
|
||
# 日志和输出配置
|
||
logging:
|
||
level: "INFO" # 日志级别
|
||
file: "./training.log" # 日志文件
|
||
|
||
# 设备配置
|
||
device:
|
||
max_memory: "8GB" # 最大内存限制
|
||
gradient_checkpointing: true # 梯度检查点
|
||
|
||
# 性能优化
|
||
optimization:
|
||
gradient_accumulation_steps: 1 # 梯度累积步数
|
||
mixed_precision: true # 混合精度(如果支持) |